
21:14 Counting words with a state machine.
by Robert Graham

In this paper we implement wc, the classic Unix
word count program, using an asynchronous state
machine parser. We implement this twice: first a
simplified version supporting ASCII, then a more
complete program supporting Unicode UTF-8 en-
coding. We implement this algorithm in both C and
JavaScript. Even the latter is significantly faster
than the standard versions of wc, such as the GNU
Coreutils wc that comes with Linux.

Introduction

A parser is software that translates external data
into some internal data structures.

At university, they teach you abstract and formal
parsers, often in a class that builds a compiler. How-
ever, little of that theory is used elsewhere in your
coursework. In your networking class, the code they
teach uses concrete and ad-hoc parsers, discarding
everything you learned in your parser class. While
parser theory they teach you is useful, even aca-
demics struggle to use it in practice.

In this paper, we do a mix of theory and prac-
tice. On one hand, we look at abstract theory of
state-machines and deterministic/non-deterministic
finite automata. On the other hand, we build the
state-machine by hand, banging the bytes together.

The reason this concept is important is demon-
strated by Nginx replacing Apache as the dominant
web server on the Internet. Apache parses input the
legacy way they taught you in networking class. The
newer Nginx parses input using a state-machine.
This parsing is more scalable, allowing much higher
loads on the web server.39

In this paper, we demonstrate state-machines by
re-implementing the classic Unix command-line pro-
gram wc. Over the last year, it has been popular for
proponents of various languages to re-implement wc
in order to show that their favorite language can
compete with C in performance. In this case, we do
this to demonstrate our favorite algorithm is bet-
ter than existing algorithms, implementing it in two
different languages.

These re-implementations are usually incom-
plete, only parsing ASCII. In this paper, we do a
more complete version, correctly parsing UTF-8.

The intent of this article isn’t that you should go
and parse everything with state-machines. It puts
a burden on future programmers trying to read the
code, most of whom are unfamiliar with the tech-
nique. On the other hand, when performance and
scalability are needed, state-machines are a good
choice. You probably wouldn’t want to use them for
wc in the real world, as the program doesn’t need to
be especially fast. We choose wc in this paper only
because it’s a popular benchmark target, the simple
thing that more complex endeavors are compared
against.

What is WC?

This command-line utility has been part of Unix
since time began on the first of January, 1970. As
defined in the POSIX standard, it counts the num-
ber of lines, words and characters, when the corre-
sponding flag of -l, -w, and -c is set. If no param-
eters are set, then the default is all three, -lwc.

$ echo " ba s i c input /output " | wc
2 1 2 19

We see here that the program has reported one
line, two words, and 19 characters. Words are
counted by the number of strings of non-spaces sep-
arated by spaces. Thus, this example is only two
words, not three.

Modern character encodings can use multiple
bytes per character, such as UTF-8 or various char-
acter sets for Chinese, Japanese, and Korean. In
such cases, the -m parameter replaces the -c param-
eter, counting the number of multi-byte characters
instead of the number of bytes. As we see in these
two examples, changing from -c to -m changes the
character count:
$ echo わたしは　にほんごがすこししか　はなせません | wc －lwc

1 3 67

$ echo わたしは　にほんごがすこししか　はなせません | wc －lwm
1 3 23

39This overstates the importance of just the parsing. Nginx scales better than Apache for a lot of reasons. However, these
reasons are all interconnected: if you write an asynchronous server, then state-machine parsers are a much better way of parsing
the requests.

71



How do they implement WC?

There are many versions of the program, such
as GNU’s Coreutils for Linux, BusyBox, macOS,
FreeBSD, OpenBSD, QNX and SunOS. Most im-
plementations count words by counting the number
of times a space is followed by a non-space. Think of
it as an edge-triggered condition, going from space
to non-space. As we’ll soon see, this can also be
treated as a state-machine with two states.

Parsing words is easy, the hard part is character-
sets. We could hard-code ASCII values into our pro-
gram, such as 0x20 for space and 0x0A for newline,
but this wouldn’t work for non-ASCII systems. IBM
mainframes that use the EBCDIC character-set will
represent a space using 0x40.

Thus, instead of using hard-coded values these
programs use the standard isspace() function to
test if a character is a space. Recently, many peo-
ple have re-implemented wc in their favorite lan-
guage to show that they can be just as fast as C.
In fact, most of the processing time is spent in the
isspace() function, so all they really proved is that
hard-coded constants like 0x20 in other languages
are faster than isspace() function calls in C.

The problem is worse for multi-byte character-
sets like UTF-8. The program must first parse
multiple bytes into wide characters using functions
like mbtowc() (or mbrtowc()),40 then test if they
are a space with iswspace(). Re-implementations
often do only ASCII. This paper includes two re-
implementations, the first for ASCII, the second for
UTF-8.

How do we implement it?

Our first version supporting ASCII is shown in Fig-
ure 17. In the GitHub project accompanying this
article, the program is wc2o.c, where the ‘o’ stands
for “obfuscated C version.” This program is pretty
darn opaque when trying to figure out how it counts
words. On the other hand, it exposes the idea of
state-machine parsing.

Line 5 declares the state-machine table consist-
ing of four states. Each state is a row of three tran-
sitions. (Table 1)

Line 7 declares a table that will translate bytes.
All 256 ASCII values translate into one of three pos-
sible values: word(0), space(1), and newline(2).
Specifically, the character 0x0A or ‘\n’ translates
to newline(2), and the characters ‘\b\t\m\v\f’
translate to space(1). All other values translate
to word(0). The reason we include this translation
step is that so that the state-machine on line 5 is
4× 3 states rather than 4× 256 states. In our final
version, we don’t do this translation, and just have
large state-machines instead.

Line 15 loops getting the next byte of input,
one byte at a time. Calling getchar() here for ev-
ery character is potentially expensive, but we aren’t
benchmarking this program, just showing the algo-
rithm. In our final version, we read input a buffer
at a time instead of a byte at a time.

Line 16 does the state transition, in other words,
it parses the input. We translate the byte into
one of the three column values, word(0), space(1),
or newline(2). We look up that in the current
row, then set the next row according to the tran-
sition. Thus how in the was-space(0) state, if we
receive a non-space(0) character, we transition to
new-word(2) state.

Line 17 processes what we parsed. In our case,
the processing is trivialized to just counting the
number of times we visit each state.

40The ‘r’ in mbrtowc() means “re-entrant.” If parsing at the end of a fragment, it saves state before resuming at the start of
the next fragment.

72



#include <s td i o . h>
2 int main (void )

{
4 stat ic const unsigned char t ab l e [ 4 ] [ 3 ] = {

{2 ,0 ,1} , {2 ,0 ,1} , {3 ,0 ,1} , {3 ,0 ,1}
6 } ;

stat ic const unsigned char column [ 2 5 6 ] = {
8 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 2 , 1 , 1 , 1 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 ,
10 } ;

12 int s t a t e = 0 ;
int c ;

14
while ( ( c = getchar ( ) ) != EOF) {

16 s t a t e = tab l e [ s t a t e ] [ column [ c ] ] ;
counts [ s t a t e ]++;

18 }
p r i n t f ( "%lu %lu %lu \n" , counts [ 1 ] , counts [ 2 ] ,

20 counts [ 0 ] + counts [ 1 ] + counts [ 2 ] + counts [ 3 ] ) ;
return 0 ;

22 }

Figure 17: wc2o.c, an obfuscated word counter for ASCII.

word(0) space(1) newline(2)
was-space(0) new-word(2) was-space(0) new-line(1)
new-line(1) new-word(2) was-space(0) new-line(1)
new-word(2) was-word(3) was-space(0) new-line(1)
was-word(3) was-word(3) was-space(0) new-line(1)

Table 1: Simple word-count state machine.

73



Line 19 prints the results. The number of lines
is the number of times we visited the new-line(1)
state. The number of words is the number of times
we visited the new-word(2) state. The number of
characters is the number of times we visited all the
states combined.

Consider reading input whose only letter
is ‘x’. We start with state==was-space(0).
The ‘x’ is them translated into a column value,
word(0)==column[’x’]. The new state becomes
new-word(2) == table[was-space(0)][word(0)].

The resulting program produces the same output
as the built-in program.

$ wc < wc2o . c
2 26 74 649

4 $ . / wc2o < wc2o . c
26 74 649

What about Unicode and UTF8?

This program does hard-coded ASCII, a single-byte
character set. We need something that can handle
multi-byte character-sets, like Unicode and UTF-8.

Unicode is a character-set; UTF-8 is an encod-
ing. Unicode characters, or wide characters or code
points, are integers between 0 and 0x100FFFF. Each
code point can be represented by from one to four
bytes, as shown in Table 2.

Consider the character U+1680, Ogham Space
Mark. According to the table, this is encoded as
the three-byte sequence 0xE1 0x9A 0x80.

Ogham is an alphabet from the sixth century for
writing Old Irish that survives today as roughly 400
inscriptions on monuments and gravestones. A com-
pliant version of wc must count spaces on those mon-
uments. The space mark counts as a space character
according to iswpace(0x1680). Thus, we should be
able to count words in such inscriptions.41
$ echo ᚛ᚋᚐᚊ ᚉᚓᚏᚐᚅᚔ ᚐᚃᚔ ᚐᚈᚆᚓᚉᚓᚈᚐᚔᚋᚔᚅ᚜ | wc −lwm

1 4 30

There are about thirty such Unicode space char-
acters for which iswspace() will return true. The
libraries for Windows, Linux, and macOS have slight
disagreements about this, so what some will recog-
nize as a space will not be recognized as a space on
others. However, they all agree that U+1680 is a
space.

There are many invalid UTF-8 sequences.
Among those are unnecessarily long, redundant se-
quences. The table suggests that 0x0A may also
be represented as 0xC0 0x8A and 0xE0 0x80 0x8A.
Since this can be encoded as simply 0x0A, the longer
sequences are declared to be officially invalid and
must be rejected.

Thus, a parser for Unicode must not only con-
sider the basic math as shown in the table, but also
recognize spaces and reject invalid sequences.

How do state-machine parsers work?
You are familiar with state-machines in other parts
of computer-science, such as the famous TCP/IP
state-machines. In those state-machines, some sort
of event happens that causes a transition from one
state to another. For parsers, the event is the next
byte of input. Each byte of input is read sequen-
tially, and depending up that byte’s value, a transi-
tion happens from one state to another.

There are two ways to represent these transi-
tions: either through a big lookup table as in wc2o.c
on page 73, or with a switch/case block.

Consider HTTP. A request header looks like the
following:

1 GET / index . html HTTP/1 .0
Host : www. goog l e . com

3 User−Agent : Moz i l l a ( a c t ua l l y Chrome)

A state-machine that parses it might assign a
state to each field, like this.

START

method URI version

EOL
END

space1 space2 space3

name colon value

space

\n

colon

other

41If the editors have done their job right, you should be able to copy/paste this from the online PDF document and reproduce
these results. It works on macOS, Linux, and on Windows using the PowerShell Measure-Object commandlet, when the locale
is set to Unicode. —Rob

74



Scalar Unicode Value First Byte Second Third Fourth
00000000 00000000 0xxxxxxx 0xxxxxxx
00000000 00000yyy yyxxxxxx 110yyyyy 10xxxxxx
00000000 zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx
000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

Table 2: UTF-8 Bit Distribution, Unicode 6.0

As we receive the bytes of an HTTP request,
we enter the method state the first time we receive a
non-space character. We remain in the method state
until we receive a space character, at which point we
transition to the space1 state.

In C, we might process each byte of input with
a function like the following switch/case logic:

1 int http_parse ( int s ta te , unsigned char c ,
. . . ) {

3 switch ( s t a t e ) {
. . .

5 case METHOD: /∗GET, POST, HEAD, . . . ∗/
i f ( c == ’ \n ’ ) {

7 . . .
return EOL;

9 } else i f ( i s s p a c e ( c ) ) {
. . .

11 return SPACE1;
} else {

13 . . .
return s t a t e ; /∗ no change in s t a t e ∗/

15 }
. . .

17 }
}

Most major web servers that aren’t Apache use
this method. Nginx calls this state sw_method,
which you can see in the open-source online.42

You can test on a live network whether a web
server is parsing requests using a state-machine.
Send a request to the server consisting of GET, fol-
lowed by five billion spaces and only then the rest of
the request. If the server acts like Apache buffering
a complete header, then it’ll run out of buffer space.
If instead the server acts like Nginx and parses in-
put with a state machine, it’ll happily keep reading
spaces as long as it’s in that state. If the connection
terminates prematurely, it’ll be because of a timeout
instead of running out of buffers. (It takes a while
to send five gigabytes.)

This example uses a switch/case block of code
to handle the transitions. In our state-machines
for counting words, we use a lookup table instead.
A third choice is to use a mixture. The program
masscan, for example, does a lot of parsing of such
protocols like FTP, SMTP, X.509, and so. It uses a
mixture of switch statements and lookup tables.

42See near line 159 of ngx_http_parse.c.

75



How can we construct a state-machine
for word-counting?

Most implementations of wc effectively use a ma-
chine with two states which can be represented with
the following diagram. Note that they aren’t de-
signed explicitly as a state-machine, but that’s ef-
fectively how the code works.

was
space

was
word

space

\n

other

In the wc2o.c program, we changed this to a ma-
chine with four states. This is the table with three
types of transitions and four states:

was
space

new
line

was
word

new
word

space

\n

other

We did this in order to be overly clever in how
we were going to process the data.

Remember, there’s two things going on here.
One step is parsing the input. The next step is pro-
cessing the results. Thus, we first need to parse out
things like words, characters, and newlines. Then
we need to process this information, which for word-
counting, is done by counting each time we enter a
state. We’ve cleverly collapsed the processing into a
simple operation.

The lesson here isn’t that parsers can completely
trivialize processing as we’ve done here, but instead
that we often add artificial states to benefit later
processing.

Now let’s talk about UTF-8. Using the original
table as a guide, we might construct a state-machine
for parsing 1-byte sequences, 2-byte sequences called
a “duo,” 3-byte sequences “tri,” and 4-byte sequences
“quad.”

start1

quad2

duo2

tri3

quad3 quad4

char

tri2

illegal

However, our needs are simpler. We don’t
need to parse out the code point and test with
iswspace() but can instead include that function-
ality within the state-machine itself, where the out-
put is one of four values: word, space, newline, or
illegal.

start1

quad2

duo2

tri3

quad3 quad4

newline space word

tri2

illegal

76



There are, in fact, more states than just this. In-
stead of a simple path for 3-byte characters, we must
add additional states that recognize 3-byte charac-
ters that result in spaces. This creates a table of
roughly thirty states that’s too complex to draw
here.

Instead, here are snippets of the code that take
an existing table and adds states for characters like
U+1680 Ogham Space Mark. It clones existing states
that follow the same path, but at the end marks the
character as a space instead of a word:

/∗ c lone e x i s t i n g s t a t e s ∗/
2 memcpy( tab l e [TRI2_E1 ] , t ab l e [ TRI2 ] ,

s izeof ( t ab l e [ 0 ] ) ) ;
4 memcpy( tab l e [TRI3_E1_9a ] , t ab l e [ TRI3 ] ,

s izeof ( t ab l e [ 0 ] ) ) ;
6 /∗ l i n k in new s t a t e s ∗/

t ab l e [ 0 ] [ 0 xE1 ] = TRI2_E1 ;
8 tab l e [TRI2_E1 ] [ 0 x9a ] = TRI3_E1_9a ;

t ab l e [TRI3_E1_9a ] [ 0 x80 ] = SPACE;

What this code is doing is exactly what generic
regex code would do. All we are doing here is cre-
ating manually what regex libraries would do based
upon expressions. What we are doing here is manual
optimization for concepts that exist abstractly.

Now let’s combine our UTF-8 state-machine
parser with our word-count state-machine parser.
There’s two ways of doing this. The obvious way
is to feed the output of one as input to the other.
The other way is to combine the two into a single
state-machine.

This is a multiplicative process. That means
replicating one state-machine for every state in the
other state-machine. Again, let’s talk regex theory.
There are two ways of representing such a thing.
One way increases computation, what we call an
NFA or non-deterministic finite automata, which is
what would happen if we fed the output of one as
the input to the next. The other way keeps compu-
tation the same but increases the size of the table.
This is a DFA or deterministic finite automata. As
you build complex regexes, you cause either com-
putation to explode or memory to explode. In this
case, we’ve chosen DFA, so memory explodes.

Thus, where one state-machine needs 35 states
and the other just four, that means the combina-
tion may needs as many as 4 × 35 = 140 states.
However, we are going to do a small trick. The
was-space and new-line states are clones of each
other, as are was-word and new-word. Thus, we

only need to double rather than quadruple the UTF-
8 state-machine. This produces something that may
be represented like:

was
space

new
line

was
word

new
word

The Final Code

The final code is in wc2.c. It’s a few hundred lines
so is not included in this article but is instead avail-
able on GitHub.43

The complicated part that takes hundreds of
lines is where it builds that state-machine table.
This results in a table roughly with 70 states (rows),
and 256 columns, where each column represents the
transition that will happen when a byte of input is
received.

Once we’ve built the table, we simply process
chunks of input analogous to the following. The ac-
tual code looks slightly different, with the inner loop
separated into a parse_chunk() function.

1 unsigned counts [MAX_STATE] ;
//Get the next chunk o f input .

3 l ength = f r ead ( buf , 1 , s izeof ( buf ) , fp ) ;
//For a l l b y t e s in t ha t chunk ,

5 for ( i =0; i<length ; i++) {
//Get the next by te .

7 c = buf [ i ] ;
//Do the s t a t e t r a n s i t i o n .

9 s t a t e = tab l e [ s t a t e ] [ c ] ;
//Do the count ing .

11 counts [ s t a t e ]++;
}

13 //Report the r e s u l t s .
word_count = counts [NEW_WORD] ;

15 l ine_count = counts [LINE_COUNT] ;
char_count = counts [ 0 ] + counts [ 1 ]

17 + counts [ 2 ] + counts [ 3 ] ;

43git clone https://github.com/robertdavidgraham/wc2 || unzip pocorgtfo21.pdf wc2.zip

77



Benchmarks

For benchmarks, I started with the file pocorgtfo-
18.pdf.44 This is big (92-million bytes), but also
has the nice property of being unfriendly to parsers.

However, this turned out to be a bad choice,
or at least an awkward one. Illegal characters
cause performance problems in the mbtowc() and
iswspace() functions at the heart of existing pro-
grams. There were also big performance differ-
ences with legal text, depending upon whether it
was ASCII or Unicode, random letters/spaces, all
spaces, or all non-spaces.

To better understand the existing wc in GNU
Coreutils, I benchmarked a bunch of 92-million-byte
files. The files are:

A random sequence of UTF-8 non-spaces and
spaces, utf8.txt. A random sequence of spaces
and non-spaces in 7-bit clean ASCII, ascii.txt.
The letter x repeated 92 million times, word.txt.
The space character repeated 92 million times,
space.txt.

The command-line utility time was used, using
the userland time, in seconds.

Filename UTF-8 ASCII
pocorgtfo18.pdf 5.171 1.104
utf8.txt 2.257 0.765
ascii.txt 2.280 1.098
word.txt 0.712 0.643
space.txt 0.499 0.424

We see a roughly ten-fold performance differ-
ence of the existing GNU wc depending upon in-
put. Parsing a bunch of illegal characters as Unicode
takes 5.17 seconds, but parsing a file containing only
ASCII space characters takes 0.42 seconds.

Now for our program. We’ve written two ver-
sions, wc2.c and wc2.js, in C and JavaScript re-
spectively. Comparing our results for just the UTF-
8 mode, we see that both state machine implemen-
tations are faster than the original.

Filename GNU wc wc2.c wc2.js
pocorgtfo18.pdf 5.172 0.145 0.501
utf8.txt 2.277 0.142 0.502
word.txt 0.716 0.139 0.496
space.txt 0.498 0.142 0.501

The first property of the wc2 programs is that
they are constant time, regardless of the type of in-
put. The slight variations in time are due to inac-
curacies using time as a benchmark tool.

The second property of the programs is that they
are faster. Even at its fastest, the GNU program is
over 3 times slower than our program. At roughly
0.5 seconds, even our JavaScript program matches
the GNU program at its fastest. Given worst case
input, our program is twenty-five times as fast.

What this shows is that state-machine parsers
tend to be both fast, but also robust when given il-
legal input. When you look at what mbrtowc() and
iswspace() must do in order to guard against ma-
licious input, you’ll see that the code is quite dan-
gerous. In contrast, how the state-machine parses
malicious input is inherently safe.

Finally, just to make sure our UTF-8 parsing is
correct, we see that it produces the same results as
before, finding four words and 30 characters, given
88 bytes of input:
$ echo ᚛ᚋᚐᚊ ᚉᚓᚏᚐᚅᚔ ᚐᚃᚔ ᚐᚈᚆᚓᚉᚓᚈᚐᚔᚋᚔᚅ᚜"" | . /wc2 -lwm
1 4 30

What does asynchronous mean?
We’ve talked a lot about state machines but not
what it means for them to be asynchronous. Asyn-
chronous means that reading input is completely in-
dependent of parsing, that the parser doesn’t influ-
ence how input is read.

To understand the difference between asyn-
chronous and traditional methods, consider other
implementations of wc. They often read input using
a getword() or getline() function.45 This com-
bines some parsing with reading input. In other
words, instead of reading input in a fixed manner,
like 64k buffers, the amount read depends upon
parsing. Conversely, how the parser is constructed
depends upon how input is read. Each influences
the other.

Let’s say that we want to write a version that
can word-count thousands of files at once, simulta-
neously. Using the traditional method of combin-
ing reading with parsing, you’d have to spawn thou-
sands of threads. Using the asynchronous technique,
you can use a single thread. Using AIO APIs, the
operating system will deliver the next chunk of data
as it arrives from the disk. AIO APIs read fixed

44There are two different versions of pocorgtfo18.pdf with a SHA1 of 191b636f80d0c74164ec9d9b3544decdaa2b7df5. These
experiments describe the version with an MD5 of 84c49ffee3fffebed5875a162e43bb1d, not an MD5 of f5879ccb9570ec8def41-
c36854021b4e.

45See OpenBSD’s wc.c, near line 210.

78



sized blocks, like 64k; you can’t choose the size of
blocks depending upon the parsed contents. When
data is received, it is dispatched to the appropriate
copy of the state for parsing each file. We just need
an 8-bit integer for every file to hold all the per file
parser state.

This would be a silly thing to do with files but is
an important thing for networking services. Apache
is broken and can’t scale beyond 10,000 concurrent
TCP connections because it struggles with 10,000
threads in the system. All its major competitors
use a single thread (or single thread per CPU core)
and handle things asynchronously.

Again, the parser can’t influence data reception.
The network stack simply receives packets from the
other side, whatever size of packets those might be.
The parser must handle the case where it receives
exactly as much data as it was expecting, or too
much data, or not enough data.

Conclusion

There have been many posts over the last year of
people implementing wc in their favorite language,
such as Haskell or Python. In this paper, instead of
a different programming language, we’ve chosen a
fundamentally different algorithm, that of an asyn-
chronous state-machine parser. We’ve implemented
the same algorithm in both C and JavaScript, to
show that the speed is property of the algorithm
instead of the language.

Instead of a simplified problem of just handling
ASCII, we’ve demonstrated the algorithm using the
difficult problem of UTF-8 encodings. Given some-
thing bizarre like Ogham text, we still produce the
same answer as compliant wc programs. While only
the UTF-8 encoding is implemented, the concept ex-
tends to any character-set, including the CJK (Chi-
nese, Japanese, Korean) multi-byte character-sets.

Such state-machine parsers are costly in terms of
code maintainability: most programmers are unfa-
miliar with them. However, they have clear advan-
tages for writing scalable, secure code for modern
Internet applications.

79


