
Scryer Prolog JIT compiler

Adrián Arroyo Calle

November 2024

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 1 / 39

Outline

1 Introduction

2 JIT compilers

3 Cranelift

4 Scryer Prolog JIT

5 Advanced JIT topics

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 2 / 39

$whoami

Adrián Arroyo Calle
aarroyoc@adrianistan.eu
@aarroyoc@social.adrianistan.eu
https://adrianistan.eu
Backend developer at Telefónica
(Digital Innovation)

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 3 / 39

https://castilla.social/@aarroyoc
https://adrianistan.eu

What is a JIT compiler?

A compiler is a program that takes code in a programming
language and outputs code in another language.

GCC, rustc, javac, . . .

Most of the compilers that pop in our minds when talking about
the topic are AOT.
Those compilers are run whenever we want and produce a
permanent output we can use later.
A JIT in contrast runs just before executing a piece of code, to
accelerate the execution.

It is dictated by the flow of the program and the output they
generate is not permanent.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 4 / 39

Why a JIT compiler?

AOT compilation must deal with binary generation and ship
their own runtime.
Prolog is a very dynamic language, we need to ship a compiler
too.
A JIT compiler can live next to the interpreter, making it easier
to implement.
What about performance?

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 5 / 39

When a JIT compiler?

The results of JIT compilation only live in the current session of
execution.
If a JIT compiler needs to do a compilation phase before
executing it, it will only make sense if the code is going to be
called several times.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 6 / 39

I started the JIT project as a way to increase the performance of
Scryer Prolog.
Modern computers are very fast but a traditional interpreter is
not capable of exploiting all that power.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 7 / 39

JIT compiler backend

When you implement a compiler, you can write your own backend
(tons of assembly!) or you can leverage that work to a compiler
backend:

LLVM. The most popular one. Rust, Clang, Swift, Julia, . . .
Focus on absolute performance.
Cranelift. Hosted by Bytecode Alliance, designed for WASM
compilation in mind. Focus on fast code generation.
QBE. Applying Pareto Principle to compiler backends. Simple
but able to get more important optimizations.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 8 / 39

Cranelift

A JIT should focus on fast code generation.
Cranelift is made in Rust, so no need to do complicated steps in
order to integrate it into Scryer Prolog.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 9 / 39

How does Cranelift work?

We generate Cranelift IR based on our WAM code.
Cranelift uses e-graphs and a rewriting language, ISLE, to find
optimizations.

What is an e-graph? All optimization rewrites are kept so rules
can "revert" optimizations to apply bigger ones instead.

Generates machine code for x86-64, AArch64 (ARM), S390x and
RISC-V64.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 10 / 39

Cranelift IR

An agnostic assembly language.
We have a textual representation and a Rust DSL.
We can define functions and basic blocks, each one with
parameters
Instead of registers we use values, which are typed and
immutable (Static Single Assignment)

How do we do loops? We use parameters in the BB.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 11 / 39

Cranelift IR - Function example

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 12 / 39

Cranelift IR - Rust DSL example

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 13 / 39

Cranelift IR - Rust DSL example

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 14 / 39

Cranelift IR - Rust DSL example

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 15 / 39

Cranelift IR - Rust DSL example

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 16 / 39

Data structures

WAM uses several data structures in
its design.
Two approaches:

Share as much as possible the
data structures between the
compiled code and the interpreter
Develop separate data structures
for the compiled code

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 17 / 39

First approach

Pros
Easier to get started and get some results.
We do not need to copy data back and forth.

Cons
Code becomes too complex, we need to interact with Rust code
that it’s not FFI safe.
Memory can be reallocated, to solve that we need to pass some
addresses via registers, and work with offsets.
We can’t use all the optimizations of Cranelift.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 18 / 39

Second approach

Pros
We can leverage Cranelift to do more optimizations.
Less complex code.

Cons
We need to implement lots of things from scratch.
We need to copy data before and after entering the compiled
section.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 19 / 39

How to start

I decided to start implementing the JIT by following the WAM
Book by Hassan Aït-Kaci.
At first I tried the first approach (sharing everything we can)
Later, I started from scratch with the second approach
We’ll talk about the second approach.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 20 / 39

Code

We take the WAM instructions for a predicate in order as a list.
For each instruction, we emit code that implements the
instruction.
Every instruction implementation is independent of other
instructions, but we have some compilation-time data structures
to implement some behaviors.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 21 / 39

The registers

How to we map the WAM registers to Cranelift?
We use an array of SSA values!
Instructions modify the contents of the array, adding or
removing new SSA variables

In WAM we just refer to the registers value with their index
number
Remember SSA values are immutable, but we can use another
one in the same index position of the array.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 22 / 39

Registers example

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 23 / 39

Heap

Heap in Scryer Prolog in v0.9.4 is just a Rust vector
We need to be able to push it, consult the length and obtain a
pointer to the underlying array.
We can use external functions in our assembly to do that.
We share the heap between interpreted and native code.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 24 / 39

store, deref and bind

Basic operations, they’re used in multiple WAM instructions.
They’re implemented in assembly, inlined (multiple store
invocations result in repeated code).
They’re very common, so we try to reduce the overhead of
calling them.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 25 / 39

Unification instructions

Unification instructions set a MODE and a READ pointer (to be
used in READ mode).
We use Cranelift vars for it

It’s an abstraction over SSA, that works like a mutable variable.
We define them at the beginning of a predicate
Each instruction can read and set them

And unification is also inlined!

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 26 / 39

Calls

Predicate calls are mapped to function calls, argument registers
being the input arguments of a Cranelift function.
When the function starts, it copies the input arguments to the
register array in the correct position.

This doesn’t mean we’re doing redudant moves. Thanks to the
SSA abstraction, we’re only moving the SSA values to help us
generate better instructions, but instruction generation only
outputs moves that are required.

Must be defined before usage. No support for recursive calls yet.
No P / CP logic. Everything is implemented with function calls.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 27 / 39

Execute

A special type of call in WAM is Execute, which is tail-optimized.
In some cases, we can use returncall instruction from Cranelift.
But if there’s backtracking, we can’t use it :/

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 28 / 39

Proceed

It’s a no-op because the whole P / CP logic is implemented with
function calls.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 29 / 39

Stack

Let’s introduce first a stack without backtracking.
When we are writing the instructions, we already know all the
code of a predicate.

Allocation instructions are static, the size of them don’t change
in runtime.
We can know how much stack is going to be used. Or at least
give a maximum stack size.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 30 / 39

Stack II

One idea we can try is: do the same as registers, making an
array of the maximum stack size full of SSA values.
Do one allocation per predicate. The stack values will be
dropped by Cranelift as soon as their contents are not needed.

But it isn’t really a stack in the sense of location. The compiler
has full control over where are really stored.

Allocations/Deallocations could be considered no-op.
Values passed to another predicates are just moved like normal
SSA values.

Because in the stack we will only store pointers to the heap and
constants.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 31 / 39

But what about StackVars

Stack Vars are an optimization proposed by the WAM book!
It saves space by making the stack also a place to store vars
content, like a mini-heap.
I argue this optimization doesn’t make sense anymore:

It was proposed in an era where memory was much more limited
than today. Since then, memory has become larger and larger.
They advanced more than CPUs.
It was proposed in a book without garbage collector, so heap
space is never reclaimed, stack space can.
It adds many checks in very common operations like deref, bind,
unify, . . .
If we add Stack Vars, we can’t use an array of SSA values as our
implementation, we must create an actual data structure for it.

We lose compiler optimizations in the middle.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 32 / 39

Backtraking

In the WAM book, the stack also holds the backtracking
information. Here we want to keep the stack as defined by now.
But we also have another problem.
Backtracking in WAM is implemented doing code jumps.

Every instruction has an index and we’re able to jump an any
code position by just knowing its index.
This is not allowed in Cranelift: only functions and blocks.
What the WAM is doing is a continuation, jumps from one place
to another restoring all the local data in the moment of the
choicepoint.
There’s a solution: unrolling the continuation.
Make the flow of the program using call/return the flow of the
backtracking.
The local data will be preserved by following the flow and
keeping a trail data structure.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 33 / 39

Backtracking Example

100 wam_do,
102 choicepoint_or_go(105),
103 unify_this, # if it fails, it goes to line 105
104 exit,
105 restore_local_data,
106 unify_that,
107 exit

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 34 / 39

Backtracking Example II

wam_do,
push_continuation_point(B),
unify_this, #if it fails, it jumps to B, which is defined
later, but the compiler sees it in the
same compilation unit

exit,
set_continuation_point(B), # here we set the block
destination and we can reset variables

unify_that,
exit

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 35 / 39

Backtracking in short

Continuation points in a predicate are managed using an
auxiliary vector, just in compile time.
Failable predicates have been modified to insert a jump to the
next continuation point if available (the vector has at least one
continuation point available)
If there are no continuation points in the vector, we just insert a
return so we can go back to the previous function.
On a call / execute we need to analyze the return status, so that
if it’s false we do the same (insert a jump to the next
continuation if possible, otherwise insert a return).

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 36 / 39

Trail

In the WAM, the trail records data that needs to be reset on
backtracking.
Unlike the stack, we need to keep it, as what goes inside is
determined at runtime.
Trail operations are also implemented in CLIF.

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 37 / 39

What else?

Other work includes making the interface between interpreter
and native code

We need trampolines, as we change the calling conventions.
Calling system calls from native code is not yet done, but will be
implemented together with a new Plugin interface

Implement the actual instructions!
It’s easier than it seems, if you already have the blocks (store,
deref, unify, bind, . . .)

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 38 / 39

the end?

Questions?

Adrián Arroyo Calle Scryer Prolog JIT compiler November 2024 39 / 39

	Introduction
	JIT compilers
	Cranelift
	Scryer Prolog JIT
	Advanced JIT topics

